Quantitative Comparison of Approximate Solution Sets for Bi-criteria Optimization Problems

نویسندگان

  • W. Matthew Carlyle
  • John W. Fowler
  • Esma Senturk Gel
  • Bosun Kim
چکیده

We present the Integrated Preference Functional (IPF) for comparing the quality of proposed sets of near-pareto-optimal solutions to bi-criteria optimization problems. Evaluating the quality of such solution sets is one of the key issues in developing and comparing heuristics for multiple objective combinatorial optimization problems. The IPF is a set functional that, given a weight density function provided by a decision maker and a discrete set of solutions for a particular problem, assigns a numerical value to that solution set. This value can be used to compare the quality of different sets of solutions, and therefore provides a robust, quantitative approach for comparing different heuristic, a posteriori solution procedures for difficult multiple objective optimization problems. We provide specific examples of decision maker preference functions and illustrate the calculation of the resulting IPF for specific solution sets and a simple family of combined objectives. Subject Areas: Evaluating the Quality of Approximate Solution Sets, Multiple Criteria Decision Making, and Multiple Objective Metaheuristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems

The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...

متن کامل

BI-OBJECTIVE OPTIMIZATION OF RESERVOIR OPERATION BY MULTI-STEP PARALLEL CELLULAR AUTOMATA

Parallel Cellular Automata (PCA) previously has been employed for optimizing bi-objective reservoir operation, where one release is used to meet both objectives. However, if a single release can only be used for one objective, meaning two separate sets of releases are needed, the method is not applicable anymore. In this paper, Multi-Step Parallel Cellular Automata (MSPCA) has been developed fo...

متن کامل

Maximum Load and Minimum Volume Structural Optimization

A bi-criteria optimization is considered whose objectives are the maximization of the load sustained by a structure and the minimization of the structure's volume. As the objectives are conflicting, the solution to the problem is of the Pareto type. The problem is elaborated for a thin-walled column of cruciform cross-section, prone to flexural and torsional buckling. A numerical example is als...

متن کامل

Selecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction

In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...

متن کامل

Multi-Scenario Multi-Criteria Optimization in Engineering Design

Motivated by applications in engineering design, a mathematical model of the multi-scenario multi-criteria optimization problem is introduced. Theoretical results for the single-scenario case are presented to support a solution methodology developed for the bi-scenario bi-criteria case. Multi-scenario design problems are traditionally solved by aggregation of all objectives of all scenarios int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Decision Sciences

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2003